DENSE INFINITE Bh SEQUENCES

نویسندگان

  • JAVIER CILLERUELO
  • RAFAEL TESORO
چکیده

For h = 3 and h = 4 we prove the existence of infinite Bh sequences B with counting function B(x) = x √ (h−1)2+1−(h−1)+o(1). This result extends a construction of I. Ruzsa for B2 sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Sidon sequences

We give the first explicit construction of an infinite Sidon sequence A with A(x) x for some c > 1/3. Our method allows to take c = √ 2− 1. Ruzsa proved the existence of a Sidon sequence with similar counting function but his proof was not constructive. Our method generalizes to Bh sequences when h ≥ 3. In these case our constructions are not explicit but they give the first improvements on the...

متن کامل

A greedy algorithm for Bh[g] sequences

For any positive integers h ≥ 2 and g ≥ 1, we present a greedy algorithm that provides an infinite Bh[g] sequence with an ≤ 2gnh+(h−1)/g.

متن کامل

Subspace-diskcyclic sequences of linear operators

A sequence ${T_n}_{n=1}^{infty}$ of bounded linear  operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...

متن کامل

Information measures for infinite sequences

We revisit the notion of computational depth and sophistication for infinite sequences and study the density of the sets of deep and sophisticated infinite sequences. Koppel defined the sophistication of an object as the length of the shortest total program that given some data as input produces it and the sum of the size of the program with the size of the data is as consice as the smallest de...

متن کامل

Sophisticated Infinite Sequences

In this paper we revisit the notion of sophistication for infinite sequences. Koppel defined sophistication of an object as the length of the shortest (finite) total program (p) that with some (finite or infinite) data (d) produce it and |p|+ |d| is smaller than the shortest description of the object plus a constant. However the notion of “description of infinite sequences” is not appropriately...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012